Ensembles of Cascading Trees

نویسندگان

  • Jinyan Li
  • Huiqing Liu
چکیده

We introduce a new method, called CS4, to construct committees of decision trees for classification. The method considers different top-ranked features as the root nodes of member trees. This idea is particularly suitable for dealing with high-dimensional bio-medical data as top-ranked features in this type of data usually possess similar merits for classification. To make a decision, the committee combines the power of individual trees in a weighted manner. Unlike Bagging or Boosting which uses bootstrapped training data, our method builds all the member trees of a committee using exactly the same set of training data. We have tested these ideas on UCI data sets as well as recent bio-medical data sets of gene expression or proteomic profiles that are usually described by more than 10,000 features. All the experimental results show that our method is efficient and that the classification performance are superior to C4.5 family algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An implementation of range trees with fractional cascading in C++

Range trees are multidimensional binary trees which are used to perform d-dimensional orthogonal range searching. In this technical report we study the implementation issues of range trees with fractional cascading, named layered range trees. We also document our implementation of range trees with fractional cascading in C++ using STL and generic programming techniques.

متن کامل

Ensembles of Multi-Objective Decision Trees

Ensemble methods are able to improve the predictive performance of many base classifiers. Up till now, they have been applied to classifiers that predict a single target attribute. Given the non-trivial interactions that may occur among the different targets in multi-objective prediction tasks, it is unclear whether ensemble methods also improve the performance in this setting. In this paper, w...

متن کامل

Using Model Trees and Their Ensembles for Imbalanced Data

Model trees are decision trees with linear regression functions at the leaves. Although originally proposed for regression, they have also been applied successfully in classification problems. This paper studies their performance for imbalanced problems. These trees give better results that standard decision trees (J48, based on C4.5) and decision trees specific for imbalanced data (CCPDT: Clas...

متن کامل

Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles

In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...

متن کامل

Comparing ensembles of decision trees and neural networks for one-day-ahead streamflow prediction

Ensemble learning methods have received remarkable attention in the recent years and led to considerable advancement in the performance of the regression and classification problems. Bagging and boosting are among the most popular ensemble learning techniques proposed to reduce the prediction error of learning machines. In this study, bagging and gradient boosting algorithms are incorporated in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003